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Basic Issues

Energy in Laboratories ... Implications of 100% Outside Air!
Waste Energy ... Once-thru Mentality!
Recovery Opportunities

e Water vs. Air Systems

e Process vs. Comfort Systems
e Total Heat vs. Sensible Heat
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Basic HVAC Systems ...




Origin of Energy Use and Costs

Fume Hoods are the
Energy Hogs of Labs ... but
Airflows for Cooling Load
, H Can Also Be a Major Factor

Exhaust Airflow Is the

Most Promising Target

for Energy Recovery jg
Most Laboratorig




Basic Issues

Energy in Laboratories
Waste Energy
Recovery Opportunities
e Process vs.|Comfort|Systems
o Water vs.ystems
e Total Heat vs.|Sensible|Heat
Air-to-Air Technologies

e Flat Fixed Plate Heat Exchangers
e Heat Pipe Exchangers

e: Rotary (Heat Wheel) Exchangers  :

o] Coil Recovery (Run-Around) Loops
Economics

e Energy Costs

e Maintenance Costs

e Installation (and “Deferred”) Costs
e Financial Considerations




Factors Affecting Energy Use

Airflow Density ... Peak flow for:
e Fume Hoods (size, quantity, sash area, face velocity, diversity ...)
e Loads
e Room Ventilation / Dilution
Airflow Usage
e Variable or Constant
e Operating Schedule / Operating Diversity ... Controls to Capture It
> Hourly / Daily by Lab
> Hourly / Daily Between Labs
> Seasonal




Typical Operational Profiles

100%

= (O ccupancy
Hoods in Use
Equip Loads

= Airflow by Occupancy

= = =Airflow by Usage

Chem Lab airflows based on max. 80%
usage (ie - diversity) of fume hoods.
Non-Chem Labs based on no diversity.

These Profiles are for Weekdays only.
Weekends / Holidays are assumed to be |
Bl constant (24 hrs/day) at weeknight levels. B
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Factors Affecting Energy Use

Airflow Density ... Peak flow for:
e Fume Hoods (size, quantity, sash area, face velocity, diversity ...)
e Loads
e Room Ventilation / Dilution
Airflow Usage
e Variable or Constant
e Operating Schedule / Operating Diversity ... Controls to Capture It
= Hourly / Daily by Lab
= Hourly / Daily Between Labs
> Seasonal
System Performance
e Capacity vs. Load ... Part Load Efficiencies
e Load “Tracking”
e Static Pressure Losses
e Flow and Static Pressure Variations

Weather Impacts ... Local Climate




PROFILES of TEMPERATURES in PHILADELPHIA, PA
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PROFILES of DRY BULB TEMPERATURES

(F) Bin

>
O
()]
Lo
S
T
o
%)
S
=
o
I
‘©
>
=
=
<

-~

o1

o
1

0-
-20/-16

Bridegport, CT

-10/-6 0/ 4

[ Philadelphia, PA

10/14

20/24 30/34 40/44 50/54
5Deg.(F) Temperature Bins

60/ 64

70/ 74

I/ 8.4

90/ 94




PROFILES of WET BULB TEMPERATURES
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Basic Question 1 — What are the Most Significant Determinant(s) in the
(Cost) Effectiveness of an Energy Recovery Scheme?

e Avoided Energy (Consumption) Costs?
> Electricity?
= Thermal / Fuel Based?
e Avoided Energy (Demand) Costs?
> Utility Demands?
e Avoided Equipment Capacity and Associated Costs?
> Equipment First Costs?
> Space Requirements?
> Code / Permitting Requirements?
e Other Financial Impacts?
> Tax Consequences?
> Implications of Fuel Escalation?
> Implications of Inflation?
e Maintenance Considerations?
e Sustainability Issues?
> Environmental / Pollution Control Issues?
> Natural Resource Considerations?




Basic Question 2 — How Accurately Can the Complex Interactions of
Energy Use by Laboratory HVAC Systems be “Modeled” ?

e How Many Variables are “Significant” ?
= Ambient Conditions ... Supply / Space Conditions
> Mass Flow Rates ... Air and Fluids
= Pressure Drops ... Fan Efficiencies
> Energy Cost ... Energy Recovery Rate
e What Interactions do They Have and Do They Change Over Time?
e Can They All be Adequately Established?
e What Assumptions are Necessary regarding:
> Weather?
> Building Operation?
> System Loads?
> Controls?
> Utility Rates?
> Maintenance Considerations?
e What are the Implications to Errors in the Scale of these Variablegf
e What are the Implications to Errors in their Dependency on Otliifs
Variables?
e How are the Lab Facility Growth and Other Changes Fag{ts]gXdRIt¥s




Influence of System Efficiency on Energy Use in Labs

Equipment Concepts
e Part Load Operation of Equipment Is Especially Significant
e Peak Load Efficiencies Are Less Critical As Peaks Are Rare

Generation Concepts
e Optimization of Prime Movers for Fuel Utilization
e Optimization of Temperature Differentials to Match Load Densities,
Profiles and Base Load Characteristics
Conversion Concepts
e Optimization of Temperature Differentials to Match Load Densities,
Profiles and Base Load Characteristics
Distribution Concepts
e Optimization of Temperature Differentials to Match Load Densities
and Minimize “Excessive” Losses
e Minimize Distribution Losses With Both Optimal Insulation and

Good Engineering Practice to Eliminate Excessive Pressure
Situations in the Distribution Systems.




Influence of Dynamic Operations on Energy Use in Labs

e Diversities
= Application of Diversities to both Equipment and Distribution
systems.
> Possible Offset of “Future” or “redundant” requirements with
the “reserves” available from system “diversities.
e Recovery opportunities
> Match available or compatible flows for both magnitude and
time of day
> Apply recovery concepts to both save Energy and Reduce
“capital” expenditures. [This does risk compromising any
reliability criteria.]




AIRFLOW VARIATION with CONTROL OPTIONS
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AIRFLOW VARIATION with CONTROL OPTIONS
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AIRFLOW VARIATION with CONTROL OPTIONS
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AIRFLOW VARIATION with CONTROL OPTIONS

Air Changes / Hour
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AIRFLOW VARIATION with CONTROL OPTIONS
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Run-Around
_ Fixed Plate RO HIEE Heat Pipe Coil Loop Themasiphon Twin Towers
A o E:g:;fw - ounterflow cunterflow Counterflow  ounterflow
arrangements Parallel flow FParallel flow Parallel flow P arallel flow P arallel flow
L] L)
g 50 and up PO to (00 o | 100 and up 100 andeige o | 100 and up
Type of Heat : Eensible (ol o L . . .
Transfer EEB::‘F'E (50 to 0% ensible (45 to 65%) Eﬁgféhm (55 1o Egﬂfl& (40 to Eggi;lable (40 to
Typ.effectiveness ) ® 3 o A5 ) ) )
[ ] [ J
Face Velocity, fpm [[100 to 1000 ° : ﬁCI fo 800 ° ; U& fio 8O0
(typ. design vel.) | (200to 1000) o JPO° 01000 450to550) o [P0 0500 (@s0to550) |00 10450
[ ] ..

Pressure drop, ®

in. of water °
(typical pressure) (0.1 to 1.5) .{.D.d to 0.7) . {0.4t0 2.0) .{Eﬁl.# to 2.0} (0.4 to 2.0)
?;%T Hre 70 to 1500°F 70 to 1500°F 40 to 95°F 50 to S00°F 40 to 104°F 40 to 115°F
Exchanger anly xchanger anly
. Exchanger in case §Exchangerin case .
Typical made of Exchanger anly il only Exchanger only
purchase E}éfgig?:r and Eif;:g?:r and Exchanger in case Complete system  BEschangerin case Complete system

[Complete system

Complete system

Unigue advan-
tages

Mo moving parts

Low pressure drop
Easily cleaned

|_atent transfer

Low pressure drop

Compact large sizes

Mo moving parts
except tilt

Fan location not criti-
cal

Allowable pressure
differential up to
G0 in. of water

Exhaust airstream
can be separated
from supply air
Fan location not
critical

Mo moving parts
Exhaust airstream
can be separated
from supply air
Fan location not
critical

Latent fransfer
from remote air-
streams

[Sultiple units in a

single system

Efficient microbio-

lagical cleaning

af both supply
and exhaust air-
streams

Cold climates may

Effactivensas limited

meciiveness may

heat rate

trol aver full range

Latent available in High effectiveness be limited by
Limitations hygroscopic units “Eﬁﬁﬁiﬁgﬁ? :ﬁﬁgﬁ”m drop reqguires accurate 8 pressure drop Few suppliers
onky [ i simulation model | and cost
iepessble, | lfew suppliers S SEppERTE
-ross-leakage R o fIT o T0% L& o o )25
i o it angle down to ypass valve or - L-ontral valve ar
Heat rate contral |([Bypass dampers e'efs'béeﬂ:l Ton- i . _jFontrol valve aver )
{HRC) schemes || and ducting frol over full range 10% of maximum Pump 3peed con full range pump 3peed con

trol aver full range
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Psychrometric Chart Humldlty;hﬂ?;m
for Altitude 0 feet \{« a

Pressure: 29.92 in. Hg / T

-]

State Point "Fdhb Ibwilba Btujlb

Ambient Summi94.00 0.01608 40.29.-.%....
° ® Exhaust Air 74.00 0.00891 27.50

Leaving AHU 52.00 n0.00812 21.28 «

bient Sum

oo

N
Recovery Effectiveness (without the
“Compromises” discussed later) range
25/ from 50% to 65% of Maximum Possible.
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Recovery Potentials are a function of
arrangement (Parallel or Counter-flow) with
implications to MER Space requirements
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Building XYZ Energy Savings System = 384,000 CFM

SYSTEM ANALYSIS Northern New Jersey

HEATING 10°F DB Winter Ambient Design

Peak Heating Load without Heat Recovery: 42,825 'mbh otaI
Peak Steam Flow without Heat Recovery: 45,318 |Ibs/hr

Peak Heating Load with Heat Recovery: 32,265 mbh
Peak Steam Flow with Heat Recovery: 34,143 Ibs/hr
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120,000

412,600 ton-hrs

Cooling with Heat Recovery

=B in AHU Load

ePBin AHU Load w/HR

—Bin AHU Load Saved
Bin Energy Saved

| Heat recovery systems should
| have a design temperature not at
| the ambient winter design

§ rate ... Unless the Capacity
| Savings are More Important!

temperature but rather at the
temperature for maximum heat

1 100,000

saved per year

6.9% of annual
ton-hrs saved

70175 65/70
Temperature Bin, °F

Annual Energy, Ton-Hrs




ENERGY USAGE for LAB SYSTEMS by END USE

Annual Energy Usage
(MBTU / NSF)
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ENERGY COSTS for LAB SYSTEMS by END USE

Annual Energy Cost
$/ NSF
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No Heat Recovery vs. Heat Recovery Operating Cost Comparison:

Without Heat Recovery Use

Operating
Unit Cost
ltem: Value $US/yr
Chiller Energy 4,176,454 | kwh/yr | $ 286,087
Chilled Water
Pumping Energy 215 BHP | $ 96,188
Condenser Water
Pumping Energy 313 BHP $ 140,274
Cooling Tower Fan
Energy 187 BHP | $ 83,900
Supply Fan Energy
(All units) 564 BHP $ 252,416
Exhaust Fan Energy
(All Units) 483 BHP $ 216,357
Heat Recovery Pump
Energy (net add'l) 0 ,eec°1"°BHP | $
I 2402 | BHP }
“, 1,792 Kw {
Plant Steam Energy | 89,822,453 bs/hriyr| $ 947,627

TOTALS

$2,022,850

~v0000" -



Estimated Cost of Initial Investment: (Add'l Capital Req'd for Heat Recovery Equip. & Utilities)

Cost
Heat Recovery Coil First Cost: 45,000 $US/coil 6 # of coil $ 270,000
Additional Exh. Ductwork First Cost: 7 $US/b 8,906 Ibs of sheet metal $ 62,339
Pumping System First Cost 30,000 US dollars 1 # ofsystems $ 30,000
Additional Piping Cost 55 $/it 720 ft. of piping $ 39,600
HR Start-up Cost: 2,000 $US/coil 6 # of coils $ 12,000
HR Coil Control Installation Cost 6,000 $US/coil 6 # of coils $ 36,000
Building Floor Area Cost: note 1 0 $US/sq.ft. 3,500 # ofsq.ft.req'd (additional) | $
Building Wall Area Cost: note 1 0 $US/In ft. 5 # offt. req'd (additional) $
(Increased RoofHeightto fitequipment)
Total:} $ 449,939
Additional Chiller Avoidance Savings: 2,538 $lton 323 # oftons saved (peak) $ 819,944
Additional Boiler Avoidance Savings: 80,000 $/kpph 11 # kpph steam saved (peak) |$ 893,968
Estimated First Cost Investment of HR Equipment: $ 449,939
$ 1263973
Project Capital Cost Savings: $ 1,263,973
Energy Savings per year including the first year: $ 139,300




Basic Question 3 — Given the Number of Variables, Is Optimization of
Heat Recovery Feasible? ... based on What Goals or Priorities?

e Operating Costs? ... Based on

= Marginal Fuel / Energy Costs?

> Extended Costs including Maintenance and Equipment?
e First Costs?

> Actual Installation?

> Avoided Costs (including Tax and other Financial impacts)
e Life Cycle Costs?

> Energy Costs?

> Maintenance Costs?

> First Costs?

> Replacement Costs

> Based on what Time-Frame and What Financial Factors?
e Benchmark Thresholds?

> Simple Payback?

> Internal Rate of Return?

> Return on Investment?
e Are Investments in the Future Realistic Given Typically Tig{fl

Project Budgets and Cost Constraints?




Basic Question 4 — What Situations or Realities of Projects and
Budgets Typically Compromise the Optimal Solutions?

e Use of Return Air, which is much more energy efficient, will likely
cut into the Overall Heat Recovery “Opportunity” by

= Complicating the Location / Arrangement of the Outside Air
“Preheat” Recovery Coil (space, controls and SP implications)
or

> Reduce the Maximum Potential Recovery Effectiveness by
reducing the Maximum Available Recovery Temperature
Differential ... could reduce effectiveness from 50-60% to as
low as 40-50%!

e Use of the Same Heating Coil for Recovery and for Supplemental
Preheat will minimize some of the Air Pressure Drops on the
Supply Air Handling Units (AHUS), but using another heat
exchanger in series with the Heat recovery Coil Loop will likely cut
into the Overall Heat Exchange Effectiveness because of inability
to Optimally Control a Coil/Valve to Prevent “overheating” being
sent to the Exhaust Air Coll

e Needs to Maintain Exhaust Stack Velocity on Systems that Tuigg
Down with VAV necessitate either Bypass Arrangements arafilsls
the Exhaust Coil or Exhaust Inlet Make-up that cuts into JEIsVEA




Summary of “Basics” for Heat Recovery Systems

e Contamination (Chemical, Odor, etc.) and Corrosion Issues
Strongly Suggest More Emphasis on Sensible Only Recovery and
Less on Latent!

e Larger “devices” = Lower Velocities = Lower S.P Drops = Less Fan
Energy and Improved Heat Exchange Effectiveness, but Physical
Implications have Associated Costs!

e The Economies of Scale Favor Larger Installations ... But again
the Physical Implications Increase Accordingly!

e The Needs to Improve the Separation of Supply Intakes and
Exhaust Discharges Make Direct Heat Exchanger Systems (Flat
Plate, Heat Pipe, Rotary Wheel, etc.) More Problematic because of
Physical Implications of Large Ductwork in Combined MERS.

e Relative Scale of Mass (Not Volume) Flows will impact overall
Effectiveness ... but the “Advantage” from more Exhaust vis-a-vis
Supply/Outside Air is Rarely Possible!

e Typical Installed Cost/CFM: $2.00 to $5.00 (excl. “space issiEEH

e Typical Annual Operating Cost Savings per CFM: $0.25
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